As recognized, adventure as capably as experience practically lesson, amusement, as without difficulty as bargain can be gotten by just checking out a ebook conceptual schema and relational database design a fact oriented approach also it is not directly done, you could undertake even more re this life, vis--vis the world.

We offer you this proper as skillfully as easy quirk to acquire those all. We pay for conceptual schema and relational database design a fact oriented approach and numerous ebook collections from fictions to scientific research in any way. among them is this conceptual schema and relational database design a fact oriented approach that can be your partner.

Conceptual Schema and Relational Database Design-G. M. Nijssen 1989

Information Modeling and Relational Databases-Terry Halpin 2001-04-17
Information Modeling and Relational Databases provides an introduction to ORM (Object Role Modeling)-and much more. In fact, it's the only book to go beyond introductory coverage and provide all of the in-depth instruction you need to transform knowledge from domain experts into a sound database design. Inside, ORM authority Terry Halpin blends conceptual information with practical instruction that will
let you begin using ORM effectively as soon as possible. Supported by examples, exercises, and useful background information, his step-by-step approach teaches you to develop a natural-language-based ORM model and then, where needed, abstract ER and UML models from it. This book will quickly make you proficient in the modeling technique that is proving vital to the development of accurate and efficient databases that best meet real business objectives. The most in-depth coverage of Object Role Modeling available anywhere-written by a pioneer in the development of ORM. Provides additional coverage of Entity Relationship (ER) modeling and the Unified Modeling Language-all from an ORM perspective. Intended for anyone with a stake in the accuracy and efficacy of databases: systems analysts, information modelers, database designers and administrators, instructors, managers, and programmers. Explains and illustrates required concepts from mathematics and set theory.

Conceptual Schema and Relational Database Design-Terence Aidan Halpin 1999 This second edition has been substantially revised and expanded to encompass the latest ideas in designing a conceptual data model. It has been written primarily for students of computer science as well as professional database designers. The major part of the book deals with Object-Role Modelling (ORM), a conceptual approach which views the world in terms of objects and the roles they play. Each chapter ends with a summary of the major points covered, and a glossary of terms and technical symbols is included. Graded exercises are included, as are selected answers, a bibliography, and an index. The author is a senior lecturer and director of the asymmetric research laboratory at the University of Queensland.

Information Modeling and Relational Databases-Terry Halpin 2010-07-27

Information Modeling and Relational Databases, Second Edition, provides an introduction to ORM (Object-Role Modeling) and much more. In fact, it is the only book to go beyond introductory coverage and provide all of the in-depth instruction you need to transform knowledge from domain experts into a sound database design. This book is intended for anyone with a stake in the accuracy and efficacy of databases: systems analysts, information modelers, database designers and administrators, and programmers. Terry Halpin, a pioneer in the development of ORM, blends conceptual information with practical instruction that will let you begin using ORM effectively as soon as possible. Supported by examples, exercises, and useful background information, his step-by-step approach teaches you to develop a natural-language-based ORM model, and then, where needed, abstract ER and UML models from it. This book will quickly make you proficient in the modeling technique that is proving vital to the development of accurate and efficient databases that best meet real business objectives. Presents the most indepth coverage of Object-Role Modeling available anywhere, including a thorough update of the book for ORM2, as well as UML2 and E-R (Entity-Relationship) modeling. Includes clear coverage of relational database concepts, and the latest developments in SQL and XML, including a new chapter on the impact of XML on information modeling, exchange and transformation. New and improved case studies and exercises are provided for many topics.

Encyclopedia of Database Systems-Ling Liu

Practical Issues in Database Management-Fabian Pascal 2000 The aim of this work is to provide a correct and up-to-date understanding of the practical
aspects of crucial, yet little-understood core database issues. The author identifies fundamental concepts, principles, and techniques and assesses the treatment of those issues in SQL (both the standard and commercial implementations) and gives advice on how to deal with them. Topics covered include complex data types, missing information, data hierarchies, and quota queries. Annotation copyrighted by Book News, Inc., Portland, OR

In this paper, an algorithm is presented, which can simplify the NIAM conceptual schemas and transform them into Elementary Key Normal Form relational database schema with minimum number of relation schemas.

Relational Database Design Clearly Explained - Jan L. Harrington 2002 Fully revised and updated, Relational Database Design, Second Edition is the most lucid and effective introduction to relational database design available. Here, you'll find the conceptual and practical information you need to develop a design that ensures data accuracy and user satisfaction while optimizing performance, regardless of your experience level or choice of DBMS. Supporting the book's step-by-step instruction are three case studies illustrating the planning, analysis, and design steps involved in arriving at a sound design. These real-world examples include object-relational design techniques, which are addressed in greater detail in a new chapter devoted entirely to this timely subject.

* Concepts you need to master to put the book's practical instruction to work.
* Methods for tailoring your design to the environment in which the database will run and the uses to which it will be put.
* Design approaches that ensure data accuracy and consistency.
* Examples of how design can inhibit or boost database application performance.
* Object-
relational design techniques, benefits, and examples. * Instructions on how to choose and use a normalization technique. * Guidelines for understanding and applying Codd's rules. * Tools to implement a relational design using SQL. * Techniques for using CASE tools for database design.

Conceptual Database Design-Carlo Batini 1992
This database design book provides the reader with a unique methodology for the conceptual and logical design of databases. A step-by-step method is given for developing a conceptual structure for large databases with multiple users. Additionally, the authors provide an up-to-date survey and analysis of existing database design tools.

Fundamentals of Object Databases-Suzanne W. Dietrich 2011
This monograph presents the fundamentals of object databases, with a specific focus on conceptual modeling of object database designs. After an introduction to the fundamental concepts of object-oriented data, the monograph provides a review of object-oriented conceptual modeling techniques using side-by-side Enhanced Entity Relationship diagrams and Unified Modeling Language conceptual class diagrams that feature class hierarchies with specialization constraints and object associations. These object-oriented conceptual models provide the basis for introducing case studies that illustrate the use of object features within the design of object-oriented and object-relational databases. For the object-oriented database perspective, the Object Data Management Group data definition language provides a portable, language-independent specification of an object schema, together with an SQL-like object query language. LINQ (Language INtegrated Query) is presented as a case study of an object query language together with its use in the db4o open-source object-oriented database. For the object-relational perspective, the object-relational features of the SQL standard are
presented together with an accompanying case study of the object-relational features of Oracle. For completeness of coverage, an appendix provides a mapping of object-oriented conceptual designs to the relational model and its associated constraints."--P. [4] of cover.

Database Design for Smarties - Robert J. Muller
1999-03-08
Craft the Right Design Using UML
Whether building a relational, object-relational, or object-oriented database, database developers are increasingly relying on an object-oriented design approach as the best way to meet user needs and performance criteria. This book teaches you how to use the Unified Modeling Language—the official standard of the Object Management Group—to develop and implement the best possible design for your database. Inside, the author leads you step by step through the design process, from requirements analysis to schema generation. You'll learn to express stakeholder needs in UML use cases and actor diagrams, to translate UML entities into database components, and to transform the resulting design into relational, object-relational, and object-oriented schemas for all major DBMS products.

Features
Teaches you everything you need to know to design, build, and test databases using an OO model.
Shows you how to use UML, the accepted standard for database design according to OO principles.
Explains how to transform your design into a conceptual schema for relational, object-relational, and object-oriented DBMSs.
Offers practical examples of design for Oracle, SQL Server, Sybase, Informix, Object Design, POET, and other database management systems.
Focuses heavily on re-using design patterns for maximum productivity and teaches you how to certify completed designs for re-use.

Specification of Conceptual Database Schema Languages - Emmanuel G. Theodossakis 1988
In a database design process the database model used is
essential for producing a good conceptual schema. In most database models, like IMS and CODASYL, a conceptual schema contains too many implementation details which complicate the designer's task. The conceptual schema of a relational database hides too much information from the user, because it lacks the necessary structure. The standard E-R model has more structure and is easy to use. But, it still lacks the ability to express certain types of abstract concepts needed in most design processes. In this work an extended E-R model is used, which includes abstraction hierarchies. A conceptual schema language (EXERM-CSL), extended in order to include abstraction hierarchies, is proposed to define the structural part of the model. The integrity part of the model has also been included. No model would be complete without the manipulative part. Many languages have been proposed for the E-R model. Some of them take advantage of a schema graph, as for instance GORDAS. Others are based on the concept of simplified completeness, like

Executable Language for instance. In this work we propose a high-level query language (EXERM-DML), which not only makes use of the E-R diagram, but it is also based on the Reshaped Relational Algebra (RRA), which gives more expressive power to the language itself. EXERM-DML also makes provisions for abstraction hierarchies. Finally EXERM-DML is a complete database language as far as retrieval, insertion, and updating of data is concerned.

On Automation of Semantic Approach for Relational Database Design-Yanchun Zhang 1990 Abstract: "We describe a tool system (ESM) for detection of unwanted properties (such as implied fact types) of a conceptual schema and show how the system supports the design process. The system uses a rigorous, information-content-preserving approach to schema transformation, but combines it with heuristic and user interaction. We show how normalization techniques, particularly the
How to abstractly model complex information systems but also how to formalize abstract specifications in ways that let developers complete programming tasks within the conceptual model itself. They are grouped into sections on programming with conceptual models, structure modeling, process modeling, user interface modeling, and special challenge areas such as conceptual geometric modeling, information integration, and biological conceptual modeling. The Handbook of Conceptual Modeling collects in a single volume many of the best conceptual-modeling ideas, techniques, and practices as well as the challenges that drive research in the field. Thus it is much more than a traditional handbook for advanced professionals, as it also provides both a firm foundation for the field of conceptual modeling, and points researchers and graduate students towards interesting challenges and paths for how to contribute to this fundamental field of computer science.
Fundamentals of Database Systems- Ramez Elmasri 2008-09

Handbook of Relational Database Design- Candace C. Fleming 1989 This book provides a practical and proven approach to designing relational databases. It contains two complementary design methodologies: logical data modeling and relational database design. The design methodologies are independent of product-specific implementations and have been applied to numerous relational product environments.

0201114348B04062001

The Design of Relational Databases- Heikki Mannila 1992 This is a reference guide on the design of relational databases. It applies the entity-relationship model to the conceptual level of database design, and combines this application with rigorous treatment of the design of relational schemes. The book presents practical design theory and methods in a unified way.

Data Reverse Engineering- Linda Judith Bird 1997

Database Design- Naphtali Rishe 1992 This book covers the broad field of database design from the perspective of semantic modeling. Aimed at present and future designers of database applications, software engineers, systems analysts and programmers, it aims to offer a unified study of semantic, relational, network and hierarchical databases as seen through the semantic modeling approach. The book provides a structured top-down methodology of database design in all the models and presents the principal types of database languages.

The Architectural Logic of Database Systems- Emmanuel J. Yannakoudakis 2012-12-06 If we look back to pre-database systems and the data units which were in use, we will establish a hierarchy starting with the concept of 'field' used to build 'records'
which were in turn used to build higher data units such as 'files'. The file was considered to be the ultimate data unit of information processing and data binding 'monolith'. Moreover, pre-database systems were designed with one or more programming languages in mind and this in effect restricted independent development and modelling of the applications and associated storage structures. Database systems came along not to turn the above three units into outmoded concepts, but rather to extend them further by establishing a higher logical unit for data description and thereby offer high level data manipulation functions. It also becomes possible for computer professionals and other users to view all information processing needs of an organisation through an integrated, disciplined and methodical approach. So, database systems employ the concepts field, record and file without necessarily making them transparent to the user who is in effect offered a high level language to define data units and relation ships, and another language to manipulate these. A major objective of database systems is to allow logical manipulations to be carried out independent of storage manipulations and vice versa.

Physical Database Design
Sam S. Lightstone 2010-07-26
The rapidly increasing volume of information contained in relational databases places a strain on databases, performance, and maintainability: DBAs are under greater pressure than ever to optimize database structure for system performance and administration. Physical Database Design discusses the concept of how physical structures of databases affect performance, including specific examples, guidelines, and best and worst practices for a variety of DBMSs and configurations. Something as simple as improving the table index design has a profound impact on performance. Every form of relational database, such as Online Transaction Processing (OLTP), Enterprise Resource Management (ERP), Data Mining (DM), or
Management Resource Planning (MRP), can be improved using the methods provided in the book. The first complete treatment on physical database design, written by the authors of the seminal, Database Modeling and Design: Logical Design, Fourth Edition Includes an introduction to the major concepts of physical database design as well as detailed examples, using methodologies and tools most popular for relational databases today: Oracle, DB2 (IBM), and SQL Server (Microsoft) Focuses on physical database design for exploiting B+tree indexing, clustered indexes, multidimensional clustering (MDC), range partitioning, shared nothing partitioning, shared disk data placement, materialized views, bitmap indexes, automated design tools, and more!

Advances in Conceptual Modeling - Peter P. Chen

1999-10-27 The objective of the workshops associated with the ER'99 18th International Conference on Conceptual Modeling is to give participants access to high level presentations on specialized, hot, or emerging scientific topics. Three themes have been selected in this respect: — Evolution and Change in Data Management (ECDM'99) dealing with handling the evolution of data and data structure, — Reverse Engineering in Information Systems (REIS'99) aimed at exploring the issues raised by legacy systems, — The World Wide Web and Conceptual Modeling (WWWCM'99) which analyzes the mutual contribution of WWW resources and techniques with conceptual modeling. ER'99 has been organized so that there is no overlap between conference sessions and the workshops. Therefore participants can follow both the conference and the workshop presentations they are interested in. I would like to thank the ER'99 program co-chairs, Jacky Akoka and Mokrane Bouzeghoub for having given me the opportunity to organize these workshops. I would also like to thank Stephen Liddle for his valuable help in managing the evaluation procedure for submitted papers and helping
August 1999 Jacques Kouloumdjian Preface for ECDM'99 The first part of this volume contains the proceedings of the First International Workshop on Evolution and Change in Data Management, ECDM'99, which was held in conjunction with the 18th International Conference on Conceptual Modeling (ER'99) in Paris, France, November 15-18, 1999.

Conceptual Schema and Relational Database Design-G. M. Nijssen 1989

Database Management Systems-Raghu Ramakrishnan 2000 Database Management Systems provides comprehensive and up-to-date coverage of the fundamentals of database systems. Coherent explanations and practical examples have made this one of the leading texts in the field. The third edition continues in this tradition, enhancing it with more practical material. The new edition has been reorganized to allow more flexibility in the way the course is taught. Now, instructors can easily choose whether they would like to teach a course which emphasizes database application development or a course that emphasizes database systems issues. New overview chapters at the beginning of parts make it possible to skip other chapters in the part if you don't want the detail. More applications and examples have been added throughout the book, including SQL and Oracle examples. The applied flavor is further enhanced by the two new database applications chapters.

Database Schema Evolution and Meta-Modeling-Herman Balsters 2003-06-29 The Ninth International Workshop on Foundations of Models and Languages for Data and Objects (FoMLaDO) took place in Dagstuhl Germany, September 18-21, 2000. The topic of this workshop was Database schema Evolution.
and Meta-Modeling; this FoMLaDO Workshop was hence assigned the acronym DEMM 2000. These post-proceedings contain the revised versions of the accepted papers of the DEMM 2000 workshop. Twelve regular papers were accepted for inclusion in the proceedings. The papers address the following issues:
{ Consistency of evolving concurrent information systems
{ Adaptive specifications of technical information systems
{ Change propagation in schema evolution of object-based systems
{ Evolving software of a schema evolution system
{ Logical characterization of schema evolution
{ Conflict management in integrated databases
{ Evolving relation schemas
{ Conceptual descriptions of adaptive information systems
{ OQL-extensions for metadata access
{ Metamodeling of schema evolution
{ Metrics for conceptual schema evolution
{ Incremental datawarehouse construction
In addition to the regular papers, there is an invited paper by Can Türker on schema evolution in SQL99 and (object-)relational databases.

Acknowledgements: We wish to thank the program committee members for their work on reviewing the submitted papers. We also wish to thank all authors for submitting papers to this workshop. Moreover, all participants of the workshop are thanked for contributing to lively discussions. Thanks also to Elke Rundensteiner, who delivered an invited talk on the SERF-project concerning flexible database transformations.

High-Performance Web Databases-Sanjiv Purba
2000-09-21 As Web-based systems and e-commerce carry businesses into the 21st century, databases are becoming workhorses that shoulder each and every online transaction. For organizations to have effective 24/7 Web operations, they need powerhouse databases that deliver at peak performance-all the time. High Performance Web Databases: Design, Development, and
Design and Use of Relational Databases in Chemistry - TJ O'Donnell
2008-12-05
Optimize Your Chemical Database Design and Use of Relational Databases in Chemistry helps programmers and users improve their ability to search and manipulate chemical structures and information, especially when using chemical database "cartridges". It illustrates how the organizational, data integrity, and extensibility properties of relational databases are best utilized when working with chemical information. The author facilitates an understanding of existing relational database schemas and shows how to design new schemas that contain tables of data and chemical structures. By using database extension cartridges, he provides methods to properly store and search chemical structures. He explains how to download and install a fully functioning database using free, open-source chemical extension cartridges within PostgreSQL. The author also discusses how to access a database on a computer network using both new and existing applications. Through examples of good database design, this book shows you that relational databases are the best way to store, search, and operate on chemical information.

Relational Database Technology - Suad Alagic
1986-06-24
This book presents a unified collection of concepts, tools, and techniques that constitute the most important technology available today for the design and implementation of information systems. The framework adopted for this integration goal is the one offered by the relational model of data, its applications, and implementations in multiuser and distributed environments. The topics presented in the book include conceptual modeling of application environments using the relational model, formal properties of that model, and tools such as relational languages which go with it, techniques for the logical and physical design of relational database systems.
and their implementations. The book attempts to develop an integrated methodology for addressing all these issues on the basis of the relational approach and various research and practical developments related to that approach. This book is the only one available today that presents such an integration. The diversity of approaches to data models, to logical and physical database design, to database application programming, and to use and implementation of database systems calls for a common framework for all of them. It has become difficult to study modern database technology without such a unified approach to a diversity of results developed during the vigorous growth of the database area in recent years, let alone to teach a course on the subject.

This volume constitutes the refereed proceedings of the following 9 international workshops: OTM Academy, OTM Industry Case Studies Program, Cloud and Trusted Computing, C&TC, Enterprise Integration, Interoperability, and Networking, EI2N, Industrial and Business Applications of Semantic Web Technologies, INBAST, Information Systems, om Distributed Environment, ISDE, Methods, Evaluation, Tools and Applications for the Creation and Consumption of Structured Data for the e-Society, META4eS, Mobile and Social Computing for collaborative interactions, MSC, and Ontology Content, OnToContent 2014. These workshops were held as associated events at OTM 2014, the federated conferences "On The Move Towards Meaningful Internet Systems and Ubiquitous Computing", in Amantea, Italy, in October 2014. The 56 full papers presented together with 8 short papers, 6 posters and 5 keynotes were carefully reviewed and selected from a total of 96 submissions. The focus of the workshops were on the following subjects models for interoperable infrastructures, applications, privacy and access control,
reliability and performance, cloud and configuration management, interoperability in (System-of-)Systems, distributed information systems applications, architecture and process in distributed information system, distributed information system development and operational environment, ontology is use for eSociety, knowledge management and applications for eSociety, social networks and social services, social and mobile intelligence, and multimodal interaction and collaboration.

Developing High Quality Data Models-Matthew West 2011-02-07 Developing High Quality Data Models provides an introduction to the key principles of data modeling. It explains the purpose of data models in both developing an Enterprise Architecture and in supporting Information Quality; common problems in data model development; and how to develop high quality data models, in particular conceptual, integration, and enterprise data models. The book is organized into four parts. Part 1 provides an overview of data models and data modeling including the basics of data model notation; types and uses of data models; and the place of data models in enterprise architecture. Part 2 introduces some general principles for data models, including principles for developing ontologically based data models; and applications of the principles for attributes, relationship types, and entity types. Part 3 presents an ontological framework for developing consistent data models. Part 4 provides the full data model that has been in development throughout the book. The model was created using Jotne EPM Technologys EDMVisualExpress data modeling tool. This book was designed for all types of modelers: from those who understand data modeling basics but are just starting to learn about data modeling in practice, through to experienced data modelers seeking to expand their knowledge and skills and solve some of the more challenging problems of data modeling. Uses a number of
common data model patterns to explain how to develop data models over a wide scope in a way that is consistent and of high quality. Offers generic data model templates that are reusable in many applications and are fundamental for developing more specific templates. Develops ideas for creating consistent approaches to high quality data models.

Query Processing in Database Systems

W. Kim 2012-12-06 This book is an anthology of the results of research and development in database query processing during the past decade. The relational model of data provided tremendous impetus for research into query processing. Since a relational query does not specify access paths to the stored data, the database management system (DBMS) must provide an intelligent query-processing subsystem which will evaluate a number of potentially efficient strategies for processing the query and select the one that optimizes a given performance measure. The degree of sophistication of this subsystem, often called the optimizer, critically affects the performance of the DBMS. Research into query processing thus started has taken off in several directions during the past decade. The emergence of research into distributed databases has enormously complicated the tasks of the optimizer. In a distributed environment, the database may be partitioned into horizontal or vertical fragments of relations. Replicas of the fragments may be stored in different sites of a network and even migrate to other sites. The measure of performance of a query in a distributed system must include the communication cost between sites. To minimize communication costs for-queries involving multiple relations across multiple sites, optimizers may also have to consider semi-join techniques.

On Conceptual Modelling

M.L. Brodie 2012-12-06 The growing demand for systems of ever-increasing complexity and precision has stimulated the need for higher level concepts, tools, and
techniques in every area of Computer Science. Some of these areas, in particular Artificial Intelligence, Databases, and Programming Languages, are attempting to meet this demand by defining a new, more abstract level of system description. We call this new level conceptual in recognition of its basic conceptual nature. In Artificial Intelligence, the problem of designing an expert system is seen primarily as a problem of building a knowledge base that represents knowledge about an enterprise. Consequently, Knowledge Representation is viewed as a central issue in Artificial Intelligence research.

Database design methodologies developed during the last five years are almost unanimous in offering semantic data models in terms of which the designer directly and naturally models an enterprise before proceeding to a detailed logical and physical database design. In Programming Languages, different forms of abstraction which allow implementation independent specifications of data, functions, and control have been a major research theme for a decade. To emphasize the common goals of these three research efforts, we call this new activity conceptual modelling.

Business Intelligence Guidebook-Rick Sherman

2014-11-04 Between the high-level concepts of business intelligence and the nitty-gritty instructions for using vendors’ tools lies the essential, yet poorly-understood layer of architecture, design and process. Without this knowledge, Big Data is belittled – projects flounder, are late and go over budget. Business Intelligence Guidebook: From Data Integration to Analytics shines a bright light on an often neglected topic, arming you with the knowledge you need to design rock-solid business intelligence and data integration processes. Practicing consultant and adjunct BI professor Rick Sherman takes the guesswork out of creating systems that are cost-effective, reusable and essential for transforming raw data into valuable...
information for business decision-makers. After reading this book, you will be able to design the overall architecture for functioning business intelligence systems with the supporting data warehousing and data-integration applications. You will have the information you need to get a project launched, developed, managed and delivered on time and on budget – turning the deluge of data into actionable information that fuels business knowledge. Finally, you’ll give your career a boost by demonstrating an essential knowledge that puts corporate BI projects on a fast-track to success. Provides practical guidelines for building successful BI, DW and data integration solutions. Explains underlying BI, DW and data integration design, architecture and processes in clear, accessible language. Includes the complete project development lifecycle that can be applied at large enterprises as well as at small to medium-sized businesses Describes best practices and pragmatic approaches so readers can put them into action.

Companion website includes templates and examples, further discussion of key topics, instructor materials, and references to trusted industry sources.

Data Warehouse Schema Design - Jens Lechtenbörger
2001 A data warehouse is an integrated database primarily used in organizational decision making. Although the deployment of data warehouses is current practise in the modern information technology landscapes, the methodical schema design for such databases has only been studied cursorily.

Learning PostgreSQL - Salahaldin Juba
2015-11-30 Create, develop and manage relational databases in real world applications using PostgreSQL About This Book Learn about the PostgreSQL development life cycle including its testing and refactoring Build productive database solutions and use them in Java applications A comprehensive guide to learn
about SQL, PostgreSQL procedural language and PL/pgSQL Who This Book Is For If you are a student, database developer or an administrator, interested in developing and maintaining a PostgreSQL database, then this book is for you. No knowledge of database programming or administration is necessary. What You Will Learn Learn concepts of data modelling and relation algebra Install and set up PostgreSQL database server and client software Implement data structures in PostgreSQL Manipulate data in the database using SQL Implement data processing logic in the database with stored functions, triggers and views Test database solutions and assess the performance Integrate database with Java applications Detailed knowledge of the main PostgreSQL building objects, most used extensions Practice database development life cycle including analysis, modelling, (documentation), testing, bug fixes and refactoring In Detail PostgreSQL is one of the most powerful and easy to use database management systems. It has strong support from the community and is being actively developed with a new release every year. PostgreSQL supports the most advanced features included in SQL standards. Also it provides NoSQL capabilities, and very rich data types and extensions. All that makes PostgreSQL a very attractive solution in various kinds of software systems. The book starts with the introduction of relational databases with PostegreSQL. It then moves on to covering data definition language (DDL) with emphasis on PostgreSQL and common DDL commands supported by ANSI SQL. You will then learn the data manipulation language (DML), and advanced topics like locking and multi version concurrency control (MVCC). This will give you a very robust background to tune and troubleshoot your application. The book then covers the implementation of data models in the database such as creating tables, setting up integrity constraints, building indexes, defining views and other schema objects. Next, it will...
give you an overview about the NoSQL capabilities of PostgreSQL along with Hstore, XML, Json and arrays. Finally by the end of the book, you'll learn to use the JDBC driver and manipulate data objects in the Hibernate framework. Style and approach An easy-to-follow guide to learn programming build applications with PostgreSQL, and manage a PostgreSQL database instance.

Functional Dependencies in a Hierarchical Conceptual Model-Jyrki Nummenmaa 1998 Abstract: "The database design often gets its input from a conceptual design process. The outcome of the process should somehow be used as the input for database design. For this, it is necessary to use methods to produce the necessary data for database design for the particular database model being used. We will define a hierarchical conceptual modelling language which has two types of relationships between concepts (aggregation and generalisation) and other constructs (cardinalities, concept primary keys and concept functional dependencies) to describe the conceptual schema. We show how functional dependencies for relational database design can be produced from a conceptual schema, assuming the conceptual schema meets certain conditions. The conceptual modelling language is based on the use of graph theory. Care is taken to ensure compatibility between the conceptual model and relational dependency theory. We also use relational dependency theory to operate with the conceptual model."

Relational Theory for Computer Professionals-C.J. Date 2013-05-21 All of today’s mainstream database products support the SQL language, and relational theory is what SQL is supposed to be based on. But are those products truly relational? Sadly, the answer is no. This book shows you what a real relational product would be like, and how and why it would be so much better than what’s currently...
available. With this unique book, you will: Learn how to see database systems as programming systems Get a careful, precise, and detailed definition of the relational model Explore a detailed analysis of SQL from a relational point of view There are literally hundreds of books on relational theory or the SQL language or both. But this one is different. First, nobody is more qualified than Chris Date to write such a book. He and Ted Codd, inventor of the relational model, were colleagues for many years, and Chris’s involvement with the technology goes back to the time of Codd’s first papers in 1969 and 1970. Second, most books try to use SQL as a vehicle for teaching relational theory, but this book deliberately takes the opposite approach. Its primary aim is to teach relational theory as such. Then it uses that theory as a vehicle for teaching SQL, showing in particular how that theory can help with the practical problem of using SQL correctly and productively. Any computer professional who wants to understand what relational systems are all about can benefit from this book. No prior knowledge of databases is assumed.

Databases In The 1990s - Proceedings Of The Australian Database Research Conference
Srinivasan B 1990-05-01